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Psychology is focused on variation between cases (interindividual variation). Results
thus obtained are considered to be generalizable to the understanding and explana-
tion of variation within single cases (intraindividual variation). It is indicated, how-
ever, that the direct consequences of the classical ergodic theorems for psychology
and psychometrics invalidate this conjectured generalizability: only under very strict
conditions—which are hardly obtained in real psychological processes—can a general-
ization be made from a structure of interindividual variation to the analogous structure
of intraindividual variation. IHlustrations of the lack of this generalizability are given in
the contexts of psychometrics, developmental psychology, and personality theory.
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When at the start of the new millennium scientists of all kinds of disciplines were
asked what they considered to be the single most important scientific breakthrough
of the 20th century, the majority chose Brownian motion. Indeed, the construction of
amodel for Brownian motion by Einstein in 1905 led to a revolution in science, not
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only in physics (statistical mechanics, quantum physics), but also inbiology (pattern
formation, evolutionary processes), mathematics (stochastic calculus), economics
and, of course, psychology. Modern psychology is saturated with probability mod-
els and statistical techniques. Yet, surprisingly, psychologists have mainly been in-
terested in part of the results of the stochastic revolution initiated by Einstein. Al-
though the model of Brownian motion explicitly pertains to the random (stochastic)
time-dependent behavior of a single particle (system), it appears that suchapure N =
1 time series perspective is almost completely lacking in psychology. Attention in
psychological research is almost exclusively restricted to variation between individ-
uals (interindividual variation [IEV]), to the neglect of time-dependent variation
within a single participant’s time series (intraindividual variation [IAV]).

As will be explained later, psychology as an idiographic science restores the
balance by focusing on the neglected time-dependent variation within a single in-
dividual (IAV). It brings back into scientific psychology the dedicated study of the
individual, prior to pooling across other individuals. Each person is initially con-
ceived of as a possibly unique system of interacting dynamic processes, the un-
folding of which gives rise to an individual life trajectory in a high-dimensional
psychological space. Thus, bringing back the person into scientific psychology, it
can be proven that his or her return is definitive this time. Classical theorems in
ergodic theory, a branch of mathematical statistics and probability theory, show
that most psychological processes will have to be considered to be nonergodic. For
nonergodic processes, an analysis of the structure of IEV will yield results that dif-
fer from results obtained in an analogous analysis of IAV. Hence, for the class of
nonergodic processes (which include all developmental processes, learning pro-
cesses, adaptive processes, and many more), explicit analyses of IAV for their own
sakes are required to obtain valid results concerning individual development,
learning performance, and so forth.

The foundational issue at stake concerns the relation between the structure of
IEV and the structure of IAV. Precise definitions of the terms of this relation will be
given later, but first a heuristic illustration is given. Suppose that a standard factor
analysis of p-variate measurements obtained with a sample of N participants yields
a solution involving q latent factors, where each factor can be assigned a definite
interpretation. This factor solution then constitutes a description of the structure of
IEV, because the covariance matrix from which it is obtained is computed in a par-
ticular way, namely by taking the outer product! of the p-variate vector of scores of
each participant and then averaging these outer products across the N participants.

'Let y; = [yi1, yizl be a two-variate vector of scores for participant i, where the prime symbol (*) de-
notes vector transposition. Hence, y; denotes a two-variate column vector. Then, the outer product of y;
is the product of y; with its transpose, the row vector y; . This yields a (2, 2)-dimensional matrix, the (j,
k)-th element is the product y;; * yix, j, k = 1, 2. Hence, this matrix has the squares of the individual
scores on the diagonal and the cross-products of the individual scores as off-diagonal elements.
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If N participants would yield the same vector of scores, then the covariance matrix
would be the zero matrix and no factor solution could be obtained. Hence, the man-
ner in which the N participants yield distinct score vectors (i.e., the structure of
IEV of these score vectors) provides the information on which the factor analysis is
based. Next, suppose that, under the same conditions as before, one of these N par-
ticipants, S, is repeatedly measured on T consecutive occasions, thus yielding a
p-variate time series of score vectors. Take the outer product of the p-variate score
vector of S at each occasion and then average these outer products across the T oc-
casions. The covariance matrix thus obtained describes the variation of score vec-
tors within a single participant, S, and can again be subjected to factor analysis
(Molenaar, 1985). If S would yield the same score vector at all T occasions, then
this covariance matrix would be the zero matrix and factor analysis would be im-
possible. Hence, the manner in which the score vectors of S vary across the T occa-
sions (i.e., the structure of [AV of these score vectors), provides the information on
which factor analysis of the covariance matrix of S’s time series is based.

For this particular illustrative situation, the foundational issue involves the fol-
lowing question: Under which conditions can we expect that the factor solution of
the covariance matrix characterizing the IEV across N participants is identical to
the factor solution of the covariance matrix characterizing the 1AV of S across T
occasions? More specifically, under which conditions will factor analysis of the
p-variate time series of S again yield q factors having the same definite interpreta-
tion as in the factor solution for the p-variate score vectors of the N participants?

One might be of the opinion that there should exist some lawful relation between
the structures of IEV and 1AV, at least in most circumstances and for the majority of
psychological processes. Forinstance, one might point out that the single participant
S introduced earlier (the TAV of which is factor analyzed) also belongs to the sample
of N participants, the IEV of which obeys a standard g-factor solution. I will show,
however, that this attractive opinion is not correct. More specifically, | employ math-
ematical—statistical theorems obtained in ergodic theory to clearly state the condi-
tions that are necessary (but sometimes not sufficient) for a process to be ergodic.
Only for ergodic processes is there a relation (more specifically, an equivalence at
asymptote) between the structures of IEV and IAV. The necessary conditions for
ergodicity, however, are rather strict and will not be obeyed by many psychological
processes. For the latter nonergodic processes, no asymptotic equivalence relation
between the structures of IEV and IAV exists (hence, letting the number N of partici-
pants approach infinity will be to no avail to correctly identify the analogous struc-
ture of IAV and, vice versa, letting the number of time points Tapproach infinity will
not help to correctly identify the structure of IEV). I will explain a few of the
far-reaching consequences of nonergodicity at both theoretical and applied levels. In
particular, I argue that test theory, yielding the formal and technical underpinning of
psychological test construction (Lord & Novick, 1968), gives rise to serious ques-
tions regarding its applicability to individual assessment.
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Although nonergodic processes exemplify a mild form of heterogeneity (to be
specified later), it can be conjectured that real psychological processes are hetero-
geneous in far more extreme ways. Perhaps each individual person should be con-
sidered to be unique in several important ways (one of which is his or her geno-
type). I refer to some strong theoretical reasons, mainly drawn from mathematical
biology, why this conjecture should be taken seriously. To understand how possi-
bly extensive forms of heterogeneity in human populations can go undetected in
ongoing psychological research, I show that standard statistical analysis of IEV
can be blind for the presence of even extreme forms of heterogeneity.

This article is organized as follows. In the next section some introductory re-
marks about stochastic processes, a key notion in idiographic psychology, are
given. Then follows a section devoted to the definition of ergodicity, being the gen-
eral property that divides stochastic processes into two distinct classes: those for
which the structures of IAV and IEV are equivalent (ergodic processes) and those
for which the structures of [AV and IEV are different (nonergodic processes). Next
are a number of sections in which the implications of nonergodicity are elaborated
within the context of psychometrics and developmental psychology. The closing
part of this article summarizes an empirical illustration of the detection of substan-
tial heterogeneity in multivariate psychological time series obtained in a replicated
time series design. Using advanced statistical signal analysis techniques, I show
that none of the factor solutions, describing the IAV structure of the replicated sin-
gle-participant time series of personality test score vectors, conforms to the norma-
tive (IEV) factor structure of this test.

A final remark on style of presentation. This article is written for an audience that
has at least a working knowledge of psychometrics and structural equation model-
ing. Technical terms and concepts are only explained concisely, sometimes in foot-
notes. Being a manifesto about the epistemological necessity of idiography, the arti-
cle does not aim to serve other functions such as covering the existing literature on
single-case research. In fact, I know of only one serious research program dedicated
to idiographic methodology, namely John Nesselroade’s work on P-technique (i.e.,
standard factor analysis of single-participant multivariate time series). The pub-
lished literature on idiography occupies only a vanishingly small proportion of our
scientific journals, which is an indefensible and unjustified neglect of the facts. The
facts are that one should expect the proportion of idiographic researchin psychology
tobe atleast 50%. The justification of this expectation is based on solid formal proofs
of mathematical—statistical theorems (classical ergodic theorems). To convey this
point to the audience I do not need a subtle argument, but a manifesto.

PRELIMINARY REMARKS

A standard dictionary definition of variation is: “The degree to which something
differs, for example, from a former state or value, from others of the same type, or
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from a standard.” The degree to which something differs implies a comparison, ei-
ther between distinct replicates of the thing concerned (IEV) or else between tem-
poral states of the same individual thing (IAV). To simplify matters, we always un-
derstand variation to be quantified in terms of variances and covariances, although
the gist of our remarks also applies to more general interpretations of the dictio-
nary definition. Hence, what follows the structure of variation, whether IEV or
IAV, concerns the second-order moment structure (covariance matrix) of the ob-
servations.

The definition of IEV and [AV requires some preliminary discussion of con-
cepts like behavior space and random process. Consider a set of measurable vari-
ables yielding a complete description of some domain of interest. Each variable
can be represented as a dimension in the multidimensional space spanned by the
complete set of variables. We might call this space the phase space. The values of
all the variables for an individual participant at a particular point t in time define a
point in the phase space. Adding time as an additional dimension to the phase
space yields the behavior space. The values of all variables for the same individual
participant, realized at consecutive time points, define a trajectory (life history) in
the behavior space. According to de Groot (1954), the behavior space contains all
the scientifically relevant information about a person. The complete set of life his-
tories of a population of human participants can be represented as a collection of
trajectories in the same behavior space.

To define the concept of random process consider, for a given (fixed) single par-
ticipant, the trajectory in behavior space up to some time t (where the value of tis
arbitrary). Att the trajectory characterizing the participant contains all the relevant
information about him or her that is available up to, and including, time t. Given
this information at t, the prediction of the location of his or her trajectory at the next
time point t + 1 (time is taken to proceed in discrete steps for ease of presentation
only) will in general not be exact. Even if the time point at which prediction is at-
tempted approaches infinity (and hence the available historical information about
the participant’s trajectory can increase without bound), exact prediction of the
value of this trajectory at the next time point still may not become exact. If this is
indeed the case (and it is almost always the case in psychological research), then
we consider the trajectory to be the result (realization) of a random process. Hence a
random process is characterized by irreducible uncertainty, which can differ in de-
gree for distinct random processes (their prediction can be more or less correct). If
the degree of uncertainty characterizing a process approaches zero, then it becomes
deterministic and exactly predictable. Consequently, the regularity of a random pro-
cess can range from being completely unpredictable to being deterministic.

Suitable projection of a random trajectory along the time axis of the multidi-
mensional behavior space yields a multivariate time series (one component series
associated with each distinct axis of phase space). We use the denotations random
trajectory and multivariate time series interchangeably. The concept of random
trajectory or multivariate time series is very general and can accommodate non-
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linearities like deterministic chaos (e.g., Casdagli, Eubank, Farmer, & Gibson,
1992) and sudden phase transitions (e.g., Molenaar & Hartelman, 1996; Molenaar
& Newell, 2003). To ease the presentation, however, attention will be restricted to
linear multivariate time series whose component series are real-valued and nor-
mally distributed, whereas time is considered to proceed in discrete equidistant
steps.

The following notational conventions will be used: vector-valued variables are
denoted by boldface lower-case letters, matrix-valued variables by boldface up-
per-case letters. Roman letters are used for manifest variables, Greek letters for la-
tent variables. The symbol Z denotes summation, where the subscript indicates the
index variable. The prime symbol (") denotes transposition.

A p-variate time series y(t) in discrete time t is characterized by a so-called cyl-
inder set of finite-dimensional distributions P(y;t) = Prob[y(t) < y], P(y1l, y2;t1, t2)
= Prob[y(t1) < y1; y(12) < y2], and so forth (cf. Brillinger, 1975). Accordingly, y(t)
can be regarded as a random time-dependent function and we can consider its
first-order moment function, second-order moment function, and so forth. In gen-
eral, these moment functions can be time-varying. If, however, the first-order mo-
ment function is constant, E[y(t)] = ¢y, where ¢y is a constant p-variate vector, then
y(t) is called first-order stationary. If its second-order central moment function
only depends on the lag k = t2 — t1, where t1 and t2 are arbitrary time points,
E[(y(t1) - cy(t1)), (¥(t2) - cy(12))'] = cov[y(tl), y(t2)'] = Cy(k), where Cy(k) is a
(p, p)-dimensional matrix for each k, then y(t) is called second-order stationary. If
y(t) is both first- and second-order stationary, then it is called weakly stationary.
Notice that a weakly stationary Gaussian time series is also strongly stationary,
that is, its finite-dimensional distributions (not just the first two moment functions)
do not depend on time.

ERGODIC PROCESSES

As indicated earlier, an ergodic process is a process in which the structures of IEV
and TAV are (asymptotically) equivalent. For nonergodic processes this equiva-
lence does not hold. To prove that a process is ergodic, either deductively, in case
the probability laws characterizing the process are known, or else inductively, can
be difficult. Tong (1990) gave some detailed deductions for special processes.
Only recently have useful inductive tests of ergodicity for single-participant time
series become available in the econometric literature (e.g., Domowitz & El-Gamal,
2001).

The situation for Gaussian time series (our standard assumption in this article)
is, however, quite simple. Consider the following result in Hannan (1970, p. 201):
A Gaussian process y(t), t =0, £, ..., is ergodic if it obeys the following restric-
tions: (a) it is weakly stationary (and hence strictly stationary); (b) it does not con-
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tain cyclic trends.2 Hence a Gaussian time series is ergodic only if its first-order
moment function (mean vector) and second-order moment function, lagged cov-
ariance matrices Cy(k), k = 0, =1, ..., are invariant in time. The situation for
non-Gaussian processes is much more complex and will not be considered here
(cf. Borovkov, 1998, for general characterizations).3

This rather general description of ergodicity (where all technical details have
been omitted; cf. e.g., Petersen, 1983, for a thorough introduction) will be illus-
trated shortly by applying it to the longitudinal factor model. But first the follow-
ing qualification is in order. Ergodicity was introduced by Boltzmann in his at-
tempts to provide a statistical mechanical foundation for the thermodynamics of
systems in equilibrium. In this respect, ergodic theory has failed (cf. Earman &
Rédei, 1996; Guttmann, 1999; Sklar, 1993). For our purposes, however, this is not
relevant. We need only ergodic theory as the proper mathematical—statistical the-
ory about the conditions under which the structures of IEV and IAV are equal. As a
purely mathematical discipline, ergodic theory has thrived since it was first pro-
posed by Boltzmann. For instance, it plays an important role in the new paradigm
of nonlinear dynamics (e.g., Sinai, 1994) and the advanced theory of Markov pro-
cesses (e.g., Borovkov, 1998; Keller, 1997).

Let’s close this section with a specification of the conditions under which a
standard longitudinal factor model of IEV is ergodic (and hence also models the

2Hannan specifies the second condition as follows: the spectral density S(w) of y(t) has no jumps.
The spectral density S(w) of y(t) is defined as: S(w) = cov[y(®), y(®)*], where y(w) denotes the Fourier
transform of y(t) at frequency w, and the asterisk (*) denotes transposition in combination with conju-
gation. S(w) has no jumps in case y(t) does not have cyclic trends.

3For an ergodic Gaussian process, the structures of IEV and IAV are asymptotically equivalent. To
further detail this relation it is necessary to introduce the concept of invariant measure. Consider an infi-
nitely large population of participants, where the life history (trajectory in behavior space) of each par-
ticipant obeys the same ergodic Gaussian process. This collection of individual trajectories allows for
the definition of a (Borel) probability measure L, characterizing the density of trajectory values in phase
space at each time t. In addition, the common dynamical law underlying the individual trajectories will
be inherited by the dynamical law according to which , evolves in time. We formally specify the latter
as the (measurable) automorphism 1 of phase space, mapping (¢ to T = e 1, t=0,+1, ... If tu=p for
all ¢, then p is called an invariant measure and the transformation T is called measure-preserving. For
any integrable function f we define:

fiey = Sy f(y)u(dy),

where v is the phase space and 1 is the invariant measure. In addition, for participant S belonging to the
population of participants at stake we define:

flav = limgooo TIZ f(ys (1),
where ys(t), t=0, =1, ..., denotes the trajectory in behavior space of participant S. For suitably chosen f,

figv captures the IEV structure of the process and fjay the (asymptotic) IAV structure. Because our sta-
tionary Gaussian process is ergodic, it follows that figy = fiav.
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structure of IAV). Consider T fixed time points t = 1, ..., T. In an infinitely large
population of participantsi=1, 2, ..., the standard longitudinal factor model is de-
fined as (Joreskog, 1979)

yi®) = Ami® + &0, t= 1, ..., T: T fixed; i= 1,2, ...,
T]i(t) = Bl,t—lni(t -D+ Ci(t), t=2,...,T,

where yi(t) is the (centered) p-variate vector of manifest variables for participant i,
A is a (p, q)-dimensional matrix of factor loadings at time t, N;(t) is a q-variate lon-
gitudinal latent factor at time t, (t) is p-variate Gaussian measurement error at
time t: &(t) ~ X (0, ©), B is the (q, q)-dimensional matrix of regression weights
linking m;i(t) to Mi(t-1), and {i(t) denotes g-variate Gaussian innovation at time t:
Li(t) ~ R(0, ). It is tacitly understood throughout this article that the (p, p)-di-
mensional covariance matrix of measurement errors © is always diagonal: © =
diag[e 1s 92, R (-)p].
This model is ergodic if it has the restricted form:

yi) = Ani(Y) + it),t=1, ..., T; Tfixed;1=1,2, ...,
nit) =Bni(t- D) + §i(v), t=2, ..., T,

where A is invariant over time, €(t) has constant covariance: g(t) ~ X(0, ©), B is
invariant over time, and ;(t) has constant covariance: {i(t) ~ X(0, \P). In addition,
the absolute value (modulus) of each eigenvalue of B has to be strictly less than 1.
In case a longitudinal factor solution does not obey the latter restricted form, one
cannot validly generalize to individual (IAV) applications.

TEST THEORY AND ERGODICITY

This section is devoted to the classic book on test theory by Lord and Novick
(1968), which still provides the foundational structure on which all our psycholog-
ical tests and scales are based. We follow the line of thought in the beginning of
that book, by means of a concise summary and selected quotes. Based on this tex-
tual evidence, I argue that test theory does not apply to nonergodic processes.
Some negative consequences of this state of affairs for applied test theory are indi-
cated, here and in the section entitled “Some Proof”

Lord and Novick (1968) defined the true score of a fixed person as the expected
value of the observed score of this person with respect to his or her propensity dis-
tribution of observed scores. The latter propensity distribution is characterized as a
“distribution function defined over repeated statistically independent measure-
ments on the same person” (p. 30). It is assumed that the repeated measurements
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do not affect the person in that in each replication the person responds without any
aftereffects of previous assessments (e.g., due to memory, habituation, etc.). With
. respect to this within-subject definition of true score (and of error score as the dif-
ference between observed score and true score), Lord and Novick made the follow-
ing remark: “The true and error scores defined above are not those primarily con-
sidered in test theory ... . They are, however, those that would be of interest to a
theory that deals with individuals rather than with groups (counseling ... rather
than selection)” (p. 32).

In contrast, the true and error scores that are considered in test theory are de-
fined in terms of between-subjects variation: “Primarily, test theory treats individ-
ual differences or, equivalently, measurements over people.” (p. 32).

It is clear that the original definition of true score given by Lord and Novick
(1968) applies only to IAV. The propensity distribution of a single participant is
obtained by means of repeated measurements of this participant. His or her true
score is defined as the mean of this propensity distribution. Then, for reasons that I
have criticized elsewhere (Molenaar, 2003, chap. 3), Lord and Novick consider it
practically impossible to obtain a person’s propensity distribution and therefore
test theory is further developed for IEV. They acknowledge the limitations of this
paradigm shift, although in a somewhat oblique way. It is not clear whether their
statement that the original definition of true score would be of interest to a theory
that deals with individual counseling also implies its converse. Namely, that a test
theory based on IEV (i.e., test theory as we know it) is not of interest to individual
counseling. Yet, this is what we should conclude in case the psychological process
to which test theory is applied is nonergodic. In that case the structures of IEV and
TAV can differ to an arbitrary degree, up to being completely unrelated. Hence,
claims based on classical test theory that a test is valid and reliable cannot be gen-
eralized to individual assessments of development, learning, or any other non-
stationary process. Given that such individual assessments commonly occur in ap-
plied psychology, one can appreciate the necessity to develop a test theory
according to the original true score definition of Lord and Novick (1968; i.e., a test
theory based on IAV). For further elaboration of this critique of test theory, see
Molenaar (2003, chap. 3).

HETEROGENEITY

Stationarity is a form of homogeneity in time that sanctions pooling across time
points for the purpose of estimation in single-participant time series analysis. The
assumption of homogeneity of a population of participants fulfils the same role in
analyses of [EV. Alternatively, nonstationarity is a form of heterogeneity in time
that complicates estimation in single-participant time series analysis (Molenaar,
1994; Priestley, 1989; cf. Molenaar & Newell, 2003, for an empirical application).
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Yet the (deterministic or random) variation in time of parameters of a process,
yielding nonstationarity, is not the only conceivable kind of heterogeneity in time.
More drastic versions of such heterogeneity are exemplified by processes undergo-
ing qualitative shifts in their dynamical regimes (cf. Kim & Nelson, 1999, for com-
putational details and empirical illustrations).

Let us consider a form of heterogeneity that appears to be stronger than non-
ergodicity due to time-varying parameters. Suppose that, in a population of par-
ticipants, the trajectory in behavior space of each single participant obeys a different
factor model. Hence, each participant has his or her own personal IAV factor model,
which may differ from all other participants in the number of factors, the pattern and
numerical values of loadings, and/or the error variances. Although nonstationarity
still implies that the same dynamical model applies to all members of a population,
this homogeneity assumption at the level of dynamical regimes now is dropped.
Suppose also that we randomly select N participants and register the values of their
trajectories in behavior space at a fixed time t+. Next, the data set thus obtained,
{yi(t+); i =1, ..., N; t« fixed}, is subjected to a standard (IEV) factor analysis. Ex-
actly this scenario has been used in a simulation study by Molenaar (1997) and it
was found that a standard g-factor solution, with q =1 or q =2, yields satisfactorily
fitting solutions that bear no resemblance to the idiosyncratic factor models de-
scribing the life history of each individual participant in the sample. Using the
same scenario, equivalent results have been obtained in standard (IEV) longitudi-
nal factor analyses of data sets {yi(tk); i=1, ..., N; k =1, 2; tx fixed} (Molenaar,
1999). The same results were again obtained in a quantitative genetical analysis of
simulated heterogeneous twin data (Molenaar, Huizenga, & Nesselroade, 2002).

These simulation studies, each employing the same scenario described earlier,
provide converging evidence that standard factor analysis of IEV appears to be
quite insensitive to the presence of substantial heterogeneity. This is noteworthy,
because it is a standard assumption of the latter factor model that its parameters are
invartant (fixed) across all participants in the population. Yet, despite flagrant vio-
lation of this assumption in the behavior spaces used in the simulations, standard
factor analysis of (cross-sectional, longitudinal, and twin) data sampled from these
spaces yields satisfactorily fitting solutions: likelihood ratio tests are unable to re-
Jject solutions with one or two common factors, even with substantial sample sizes,
and nothing in the obtained solutions (Lagrange multiplier tests, standard errors,
etc.) is indicative of the heterogeneity present in the population. It appears that
only dedicated factor analysis of IAV can uncover this.

DEVELOPMENT IMPLIES HETEROGENEITY

We concisely describe some strong arguments why one should expect there to be
substantial heterogeneity of the sort described in the previous section. This section
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is based on Molenaar, Boomsma, and Dolan (1993) and Molenaar and Raijmakers
(1999), to which the reader is referred for additional elaborations.

If one compares the maximum amount of information that can be stored geneti-
cally with the information required for the growth of the embryonic brain, then it
turns out that these amounts differ among several orders of magnitude. Even if
(counterfactually) all genetically stored information would be used to specify the
intricate wiring of neurons in a developing brain, this would be far too little. Hence
brain development can be successful only if the developmental processes con-
cerned are self-organizing. Self-organization is a characteristic of nonlinear dy-
namical processes and current mathematical-biological models of self-organizing
growth are of this kind (e.g., nonlinear reaction—diffusion models of biological
pattern formation; cf. Kauffman, 1993; Moller & Swaddle, 1997; Murray, 1993). It
is an important feature of self-organizing growth that it is ordered, but not invari-
ant. Edelman (1987) presented impressive empirical evidence for the existence of
variability of the detailed wiring in homologous neural structures within the same
organism or between genetically identical organisms reared in standardized envi-
ronments (cf. Molenaar et al., 1993, for additional results).

Given that the detailed wiring of neural networks in the brain of even geneti-
cally identical organisms shows considerable variation, and given that the brain is
causally related to the stream of behavior, it can be expected that this variability is
inherited by the structure of psychological processes. This implies that these psy-
chological processes are heterogeneous. Of course, several alternative scenarios
leading up to heterogeneity can be given, for instance the multitude of environ-
mental effects impinging on diverse levels of a growing, developing, adapting, and
accommodating participant, but the argument given earlier should suffice for our
present purposes.

SOME PROOF

Simulation is a powerful investigative tool. For instance, it is indispensable for the
study of small sample properties. In the section on heterogeneity we saw that it can
provide preliminary answers to new questions. Ideally, however, such answers
should be underpinned by proof. We outline some proof of the insensitivity of IEV
factor analysis to the presence of heterogeneity, our main result obtained in the
simulation studies concerned. What follows is based on Kelderman and Molenaar
(2003).

To get started we make several simplifications. Consider again a population of
participants, where the trajectory in behavior space of each participant obeys a per-
son-specific (IAV) one-factor model. So the possibility that participants can differ
with respect to the number of common factors no longer obtains. In fact, we as-
sume that the personal one-factor models of participants can differ only in the nu-
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merical values of the factor loadings. At an arbitrary, but fixed, time t+ , we then
have (remember that y;(t+) is centered):

yi(ts) = Amits) + gi(tx), i = 1, 2, ...; t« fixed.

where A; denotes the p-variate vector of individual factor loadings for participant i,
Ni(t+) is the factor score for participant i, and €;(t+) is the measurement error for this
participant. Because t+ is arbitrary and fixed, we can simplify notation:

yi=sAni+&,i=1,2, ...

Clearly, the latter model equation has the form of a simple one-factor model. How-
ever, the factor toadings in A; are random instead of fixed. Suppose that A; follows a
p-variate Gaussian distribution in the population of participants, with mean vector
v and (p, p)-dimensional covariance matrix Z: A ~ ¥ (v, Z). Simplifying further
(cf. Kelderman & Molenaar, 2003, for the general case), it is assumed that Z is a (p,
p)-variate diagonal covariance matrix: Z = diag[&, &>, ..., Ep]. In addition the
usual assumptions for the standard one-factor model are added: n; ~ R (0, W), & ~
X(0, ©), whereas n; is uncorrelated with €;. To this we also add the assumption that
Ai is uncorrelated with g; and 7;. It then can be proved by straightforward expansion
in terms of moments up to fourth order that the communal part of our factor model
with random loadings is:

cov[Am;, (A Mmi)Y'1 = E[A iJvar[;JE[A]” = vyv’

which is again the communal part of a standard (IEV) one-factor model with fixed
loadings v.

The conditions under which this result is obtained are strong. The assumption
that error variances are homogeneous across participants can easily be dropped
and changed into: € ~ X (0, ®;); that is, each participant i has measurement errors
with idiosyncratic covariance matrix ©;. In case y; is not centered and E[n;] # 0,
the same result is obtained: the communal part of the latter one-factor model with
random loadings and nonzero factor mean is also indistinguishable from the com-
munal part of a standard one-factor model with fixed loadings. Kelderman and
Molenaar (2003) presented evidence from a Monte Carlo study, showing that the
likelihood ratio associated with the one-factor model with random loadings has the
regular chi-square distribution with nominal degrees of freedom. Generalization of
these results to g-factor models (including longitudinal factor models) with ran-
dom loadings is expected to be straightforward (but has not been undertaken yet).

Even the limited proof outlined here can be seen to have important conse-
quences. The main cause of this is the fact that the proven structural equivalence of
the one-factor model with random loadings and the standard one-factor model with
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fixed loadings does not depend on the variances of the random loadings var[Ai] = 2
=diag[&,, &, ..., &pl. Suppose that a standard one-factor model is found to yield a
satisfactory fit in some applied setting, for instance, in test construction according
to classical test theory (cf. Lord & Novick, 1968, section 24.3). Our proof shows
that the finding that a standard one-factor model explains the structure of IEV
leaves entirely open the possibility that the actual factor loadings Ai, characterizing
the [AV of each individual participant i, differ to arbitrary degrees from the fixed
loadings in the standard solution. Depending on the variances diag[&;, £z, ..., Ep] of
the random loadings, it can only be stated that the probability is .95 that the partici-
pants in the population have trajectories in behavior space obeying one-factor
models of which the loadings lie in the interval v + 1.96 &, where the p-variate vec-
tor & is defined as € = [\/?’;,, \/ég, s \lﬁp]’. But& is unknown in standard factor anal-
ysis, and for all we know the entries of & can have any nonnegative value. If one
would use the standard one-factor solution to conclude that a test has high reliabil-
ity, then this is compatible with an actual state of affairs in which the test has al-
most zero reliability in an infinitely large subset of participants in the population. If
one would estimate (predict) the factor scores in the standard factor model, then
the correlation with the true factor scores in the model with random loadings may
even become negative (as has been found in the simulation study reported in
Molenaar, 1999). Obviously, this will jeopardize the confidence one can have in
decisions, arrived at in individual counseling based on the (IEV) factor scores ob-
tained with a nominally reliable test.

A CAVEAT

We happen to live in an era in which multilevel modeling appears to be rather pop-
ular. In Molenaar (2003, chap. 2), the vices and virtues of multilevel modeling,
more specifically of the so-called latent growth curve model, have been discussed
at length. In addition, it is proved that the latent growth curve model is a special
case of the latent simplex model (which for some reason appears to be less popu-
lar). Here, however, we address the latent growth curve model, a model of the
structure of IEV, to make explicit the difference with the factor model of 1AV with
random loadings that figured in the previous section. For this purpose we only
need the simplest kind of latent growth curve model (see Molenaar, 2003, for the
general case).

Lett=1, ..., T denote a sequence of fixed equidistant time points (T usually is
small; e.g., T=35). Let y;i(t), t=0, ..., T;i=1, 2, ..., denote univariate repeated
measurements obeying the following model (without loss of generality yi(t) is as-
sumed to be centered):

yi(t) = o + Bit + €(0), t € {0, ..., T}; T fixed.
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It is immediately apparent (and well-known) that this model can be rewritten as a
constrained two-factor model. Let the common latent factor be n; = [t i, Bil’, fix the
first column of the (T + 1, 2)- dimensional matrix of loadings A at 1 and the second
columnatt=0,..., T

Because the latent growth curve model is equivalent to a constrained standard
factor model, it is vulnerable to the same limitations as discussed in the previous
sections. Perhaps the distance between the latent growth curve model and the fac-
tor model with random loadings is even more extreme than for the standard factor
model, because in the standard factor model the loadings are fixed and latent,
whereas in the latent growth curve model they are fixed and manifest (i.e., have
known values).

AN EMPIRICAL COMPARISON OF THE STRUCTURES
OF IEV AND IAV

Borkenau and Ostendorf (1998) described an interesting replicated time series ex-
periment in which they obtained 30-variate time series of daily scores on a person-
ality test. There were 22 participants participating in this experiment, who were
each measured on 90 consecutive days. The test presumably measures five latent
personality dimensions (IEV factors): Neuroticism, Extraversion, Agreeableness,
Conscientiousness, and Intellect. Borkenau kindly provided the raw data (no miss-
ing values!) for additional analysis.

This data set allows for a direct comparison of the structures of IEV and IAV. To
determine the structure of IEV, a (maximum likelihood) confirmatory oblique fac-
tor analysis was carried out on a robust estimate of the (30, 30)-dimensional corre-
lation matrix. The normative loading pattern of the 30 items on the five factors was
almost completely recovered.

The 30-variate time series of each individual was also subjected to advanced
time series analysis to determine the best fitting factor model for the structure of
IAV. We then obtain results that are reminiscent of the scenario discussed earlier in
the section on heterogeneity: each individual has his or her own personal factor
model. The time series of some participants obey a two-factor model, of others a
three-factor model, and again others a four-factor model. Those participants whose
time series obeys a factor model with the same number of factors differ in various
other respects, such as loading pattern and values, measurement error variances,
and/or the process model according to which a participant’s latent factor scores
vary in time.

Clearly, in this particular application the obtained structures of IEV and IAV
differ substantially. In addition, the behavior space occupied by the 22 participants
appears to be quite heterogeneous. If one would use the nominal five-factor IEV
structure to predict an individual’s development, whereas the IAV structure of this
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particular participant obeys a three-factor model, say, then it can be expected that
prediction success will be dubious. A complete description of this application is
given in Hamaker and Molenaar (2004), together with a hybrid model linking IEV
and AV structures.

CONCLUSION

The classical ergodic theorems show that the structures of IEV and 1AV are equiva-
lent only under very stringent conditions. Only for the special case of Gaussian
processes do these conditions boil down to the requirement of stationarity of the
mean and covariance function. Almost by definition habituation, learning, and de-
velopment are nonstationary, and hence nonergodic (for non-Gaussian processes
the equivalence of [non]stationarity and [non]ergodicity has exceptions in both di-
rections). Even a few seconds of electro-encephalographic registration, obtained
under stationary conditions with a resting participant with eyes closed, is nons-
tationary. For nonergodic processes there is no scientifically respectable alterna-
tive but to study the structures of IAV and IEV for their own sakes. For further in-
formation about investigation of the structures of AV under realistic conditions,
including alternative perspectives on generalization, the reader is referred to
Nesselroade and Molenaar (1999) and Hamaker, Dolan, and Molenaar (2003).

One can conceive of nonstationarity/nonergodicity as a rather mild form of heter-
ogeneity in time. Both empirical and mathematical evidence obtained in the biologi-
cal sciences is indicative of the presence of stronger forms of structural heterogene-
ity. Converging evidence obtained in simulation studies, as well as analytic proofina
special case, shows that it is difficult (up to impossible, in the special case) to detect
such stronger forms of heterogeneity in standard factor analysis of IEV. Some dis-
turbing implications of this state of affairs for test theory were considered.

The key to the dedicated study of structures of IAV is (replicated) time series anal-
ysis. Atthe University of Amsterdam we developed sophisticated time series analy-
sis software for most conceivable cases. Following the classification of latent vari-
able models in Bartholomew (1987), special freeware is available for the case in
which manifest and latent processes are both metrical (state-space modeling; cf.
Molenaar, 1985), for the case in which the manifest process is categorical and the la-
tent process is metrical (generalized linear dynamical modeling; cf. Fahrmeir &
Tutz, 1994), and for the case in which the manifest process is metrical or categorical
and the latent process is categorical (hidden Markov modeling; cf. Elliott, Aggoun,
& Moore, 1995). Hamaker et al. (2003; cf. also Nesselroade & Molenaar, 1999) dis-
cussed analysis of replicated time series when the number of participants (replicates)
and repeated observations within participants (time points) is relatively small.

In the course of the discussion we introduced the concept of a behavior space.
Cross-sections of this behavior space at one or more fixed time points yield data
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amenable to analyses of IEV, whereas time-slices of the trajectory (life history) of
one or more participants yield data amenable to analyses of IAV. The concept of
behavior space is reminiscent of the concept of an ensemble in statistical mechan-
ics (cf. MacKey, 1993, for distinctive definitions in the senses of Boltzman and of
Gibbs). The concept of behavior space has been instrumental in conveying the ba-
sic tenets of this article. Additional arguments for its usefulness are given in
Molenaar (2003, chap. 3).

The unavoidable consequence of the ergodic theorems is that psychometrics
and statistical modeling as we now know it in psychology are incomplete. What is
lacking is the scientific study of the individual, his or her structure of [AV, for its
own sake. Scientific psychology can only become complete if it includes the
idiographic point of view, alongside the nomothetic point of view. In fact, repli-
cated time series designs and analyses allow for the induction of nomothetic laws
for idiographic patterns of 1AV. The idiographic approach, firmly based on ade-
quate time series analysis, should cover all main areas in psychology, including
cognitive science, clinical psychology, and social psychology (e.g., small groups
dynamics), to mention a few. Generalized linear dynamical modeling opens up the
possibility to fit dynamical versions of item-response models to single-participant
time series obtained in educational psychology.

Coming at the end of this manifesto, I would like to make a prediction about the
future trajectory of psychology itself. The total number of persons that will have
lived on the earth before it becomes inhospitable to life (heat death) is finite (about
10'4, despite our assumptions about infinitely large populations). For a modern
physicist this number is not really large (Avogadro’s number of molecules in a
mole of gas is about 1024). Given the ongoing spectacular increase in computa-
tional capacity and facilities (e.g., quantum computing at subatomic levels), and
given also the expected increase in possibilities for on-line sensoring (e.g., mi-
cro-sensors in cloths), it can be predicted that in the near future it will be possible
to continuously assess and store the unfolding life history (trajectory in behavior
space) of each individual. Added to this is detailed knowledge of the genotype of
each individual and other relevant background variables. Using recursive optimal
control techniques, it then becomes possible to personalize treatments in place and
time (cf. Molenaar, 1987, for an application of on-line optimal control in an indi-
vidual psychotherapeutic process). The more we approach this state of affairs, the
more the power of the idiographic approach as described here will become evident.
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